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The decay of the free motion of a floating body 

By F.  URSELL 
Department of Mathematics, University of Manchester 

(Received 9 December 1963) 

A body floating on the free surface of water is given a small vertical displacement 
from its equilibrium position and is then held fixed. When the fluid has again 
come to rest the body is released. The subsequent damped motion is investigated 
when viscosity and surface tension ere neglected and the equations of motion are 
linearized. The method applies to bodies of arbitrary shape in two or three 
dimensions, and is described in detail here for the heaving motion of a horizontal 
half-immersed circular cylinder of radius a. 

The forced periodic motion of such a cylinder has been studied in earlier papers. 
In  particular, the hydrodynamic forces exerted by the fluid on the body can be 
described by a dimensionless coefficient, A(o(a/g)*), where w is the (real) angular 
frequency. The function A can be found by convergent infinite processes, but 
not explicitly, and the difficulties of the problem are due to this. The free motion 
of the cylinder is solved in the present paper by Fourier methods. The motion is 
regarded as the superposition of simple harmonic motions, and the displacement 
yo(t) is thus obtained in the form of a Fourier integral 

It is seen that the integrand involves the force coefficient A and is thus not 
strictly an explicit expression. The asymptotic behaviour for large times can be 
found explicitly when the depth is infinite: 

A damped harmonic behaviour had been expected. The slow monotonic decay 
occurs because the function A(w(a/g)&), when continued into the complex w-  
plane, can be shown to be many-valued near o = 0. No physical interpretation 
has yet been found for this property. The free motion of a cylinder set in motion 
by an applied force is also treated, with similar results. 

Reasons are given why there are no rapidly oscillatory terms in the asymptotic 
expression. For finite constant depth the function A(w(a/g) t )  is single-valued 
near w = 0, and the asymptotic expression for this case is not yet known. 

1. Introduction 
A body floating on the free surface of water is given a small vertical displace- 

ment from its equilibrium position and is then held fixed. When the fluid has 
again come to rest, the body is released and a motion of the body and fluid ensues, 
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subject only to the external force of gravity. The amplitude of motion of the 
body soon reaches a maximum and then decays as energy is progressively trans- 
ferred away from the body into the fluid by waves and by viscous action. Ulti- 
mately the body and the fluid return to their equilibrium state of rest. The motion 
is damped by waves even when viscosity is negligible, and in the present paper 
we shall consider the motion of a body subject only to wave damping in a friction- 
less fluid under gravity. Surface tension is also neglected. 

For comparison, let us consider the analogous problem in acoustics. A rigid 
body is surrounded by air (in which the velocity of sound is independent of the 
frequency) and is subject to an elastic restoring force. It is slightly displaced 
from its equilibrium position and released from rest. When the body is a sphere, 
the resulting acoustic wave motion and the motion of the body can both be 
found explicitly (Love 1904; Lamb 1932, $301). The motion of the body is the 
superposition of a finite number of exponentially damped harmonic modes. 
In  practice the damping of the modes is very light and can be calculated quite 
accurately from the energy radiated in one cycle of a forced exactly periodic 
motion, where the period is determined by the mass of the body (corrected for 
the virtual mass of the air) and the magnitude of the elastic restoring force. In 
our water-wave problem, on the other hand, the wave velocity depends on the 
wavelength, there are no known explicit solutions (not even for the forced 
periodic motion of a circular cylinder or a sphere), and the damping is not light. 

To describe some earlier attempts at  the solution of this problem it is first 
necessary to consider the form of the equations of motion. To fix ideas, let us 
confine attention to the heaving (i.e. vertical) motion of a three-dimensional 
body of such symmetry that heaving is independent of rolling and pitching. 
(Similar considerations also apply to less symmetrical bodies.) At any instant t 
the motion is described by the vertical displacement yo(t)  of the body, and by the 
velocity potential #(x, y, z ;  t )  at any point of the fluid. These functions are 
coupled through boundary conditions on the body, which contain time deriva- 
tives and thus connect the motion at time t with the motion at  neighbouring 
instants of time. Time derivatives also occur in the boundary condition satisfied 
by the potential a t  the free surface. In  the exact non-linear problem the non- 
linear boundary conditions must be applied at  the instantaneous position of the 
body and of the free surface, while in the linearized (small-amplitude) problem 
the boundary conditions are applied on fixed surfaces. We observe that three 
space dimensions and one time dimension are involved. In  the present paper 
we shall be concerned only with the linearized problem which can be reduced 
in various ways to the solution of integro-differential equations in a smaller 
number of dimensions. One such reduction is due to Sretenskii (1937) whose work 
is described in detail by Wehausen & Laitone (1960, pp. 619-620). (I have not 
seen the original paper.) The fluid motion is represented by a distribution of 
instantaneous (Cauchy-Poisson) wave sources over the surface of the body. 
The unknown functions are now the displacement yo(t)  and the instantaneous 
source strength at any point on the body at any time. Only 2 space dimensions 
are now involved which describe the surface of the body. The unknown functions 
are connected by a pair of complex linear integro-differential equations which 
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appear too complicated for analytical treatment. For certain nearly vertical 
thin and slender bodies Sretenskii assumes a relation between body shape 
and source strength, and obtains a single integro-differential equation for the 
displacement which he solves numerically for a certain thin wedge (see Wehausen 
& Laitone, p. 620). 

Another reduction to an integro-differential equation is due to Cummins 
(1962). Suppose that the Cauchy-Poisson type of wave motion due to a sudden 
initial displacement of the body can be found, the body being held fixed after 
the initial instant. (No solution of this type is known at present.) The force on the 
body at  any time can then be found and gives the coefficient function in an integro- 
differential equation of simple type for the displacement. No numerical or ana- 
lytical deductions from this equation are yet available. 

The related but simpler problem of a flat body in very shallow water has been 
solved explicitly by John (1949). This is simpler because here (as in the acoustic 
problem described above) the wave velocity is independent of the wavelength. 

In  the work described in the present paper, as in the work described above, the 
fluid will be assumed inviscid and the equations will be linearized. The depth 
of the fluid will be assumed infinite; the method also applies to finite depth but 
the asymptotic results are different. We shall concentrate on the vertical dis- 
placement yo(t)  of the body for which we shall obtain not an integro-differential 
equation but an explicit solution in integral form. The integrand involves, 
however, the force coeficient, a function of the frequency which describes the 
force acting on the body in forced periodic heaving. This force coefficient is not 
known explicitly in closed form but can be found for any desired frequency by 
solving an integral equation or an equivalent infinite system of linear equations. 
The method is applicable to bodies of general shape in two or three dimensions 
but for the sake of simplicity will be applied here in detail to one specific two- 
dimensional problem, the free heaving of a half-immersed horizontal circular 
cylinder. Thisis chosen because for the forced periodic heaving of such a cylinder 
we already possess analytical and numerical results. In  particular, the force 
coefficient A(w(a/g)*) at any given angular frequency o may be regarded as known, 
though not in closed form (see Q 3 and the appendix below). 

We shall express the free heaving motion by Fourier’s theorem as the super- 
position of periodic motions. For each frequency component the fluid action 
on the body is completely expressed by the above-mentioned function. In  this 
way the displacement is expressed as a Fourier integral involving A. This integral 
can be computed but in the present paper we shall be concerned mainly with the 
asymptotic behaviour of yo(t)  for large values of t ,  which can be obtained explicitly 
because w = 0 is a logarithmic branch point of the function A. It will be shown 
that yo(t)  is ultimately non-oscillatory. It is believed that these results are 
applicable to bodies of general shape in 2 and 3 dimensions if the depth is infinite, 
but that the asymptotic treatment for finite depth will be more difficult. We 
shall first write down the equations of motion, next consider the related problem 
of a cylinder set in motion by an applied force, and then consider the problem 
posed a t  the beginning of the introduction. 

20-2 
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2. The equations of motion 
It is assumed that the equilibrium position of the centre of the circular cylinder 

is in the mean free surface. This point is taken as the origin of rectangular 
Cartesian co-ordinates (x, y) .  The x-axis is horizontal and y increases with 
depth. Polar co-ordinates (T,  8) are defined by x = r sin 8, y = r cos 8; thus the 
equilibrium position of the cylinder is r = a, where a is the radius of the cylinder. 
The vertical displacement yo(t) of the cylinder is to be found. The amplitude of 
motion is assumed to be so small that all equations can be linearized. Since 
viscosity is neglected and the density p of the fluid is constant, it  is possible to 
describe the motion of the fluid by a velocity potential '(x, y; t )  satisfying the 
equation of continuity 

in the region r > u, 

The linearized condition of constant pressure at  the free surface is 

_ _  az' 8' 
aY 

g- = 0 when y =  0,  1x1 > a ;  

cf. Lamb (1932, $227) .  On the cylinder the radial velocity components of the 
body and of the fluid are equal, 

-- " - Ij0(t)cos# when r = a, 0 < # < &. ar 

Finally, there is the equation of motion of the body 

a 
/o'n at 

+7rpa2g0(t) = -2pgayo(t)+2pa cos8-$(usin8, acos8; t )d8+fo( t ) ,  (2.4) 

where on the right-hand side the first term is the hydrostatic restoring force, the 
second term is the resultant of the hydrodynamic pressures, and the third term 
is the applied vertical force. The mass of the body is +npu2 (per unit width), by 
the principle of Archimedes. As was explained in $ 1  above, we shall use the 
Fourier transforms of these equations. We suppose that there is no motion when 
t < 0 and write 

(2.5) 

&(w) = ei"yo(t)dt, 
/om 

Po(w) = eiutfo(t) dt. 

I f  the total energy of motion is finite, the potential energy of the body remains 
bounded, and therefore y,,(t) is bounded. It follows that the function &(o) 
of the complex frequency w is regular in the whole of the upper half w-plane 
9 w  > 0. If we make the trivial transformation o = is then (2.5) and (2.6) 

sum 
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are Laplace transforms which are widely used in initial-value problems. The 
inversion formulae are 

$(x, y; t )  = - e- iUt  ( x ,y; w)dw,  (2.7) 277 Sm --a) 

1 "  
yo( t )  = %J-" e-iwtYo(w) dw. 

Integration by parts gives 

= - iwYo(w) - y0(O), (2.9) 

eiwty,(t) dt = - iw  eiWtg0(t) dt - go(0) 

= - d Y , ( w )  -tiwy,(O) -&(O),  (2.10) 

and similar expressions involving the potential $(x,y; t ) .  From these the 
Fourier transforms of the equations of motion are readily obtained; see $93 
and 4 below. 

3. Cylinder set in motion by an applied force 
I n  this section we shall suppose that a prescribed vertical force fo(t) acts for a 

finite time, and that thereafter the system is left to itself. We impose the initial 
conditions yo(0) = go(0) = 0. On the free surface (y = 0, 1x1 > a),  we have initially 
$ = 0 (zero impulsive pressure), and 4 = 0 ( zero elevation). Now let the Fourier 

operator eiwt.. . dt be applied to the equations of motion (2.1) to (2.4). On taking 
l o W  

account of initial conditions we find that 

(&+g) '(x,y; w )  = 0 when r > a, y > 0; 

(wz+ tg i )  CD(x,y; w )  = 0 when y = 0, 1x1 > a;  (3 .2 )  

(3.3) _ -  " - -iwYo(w) cos6 when r = a, 0 < 0 < &r; 
ar 

- &rpa2w2Y0(w) = - 2pgaYo(w) - 2paiw ' ( a  sin 6 ,  a cos 6 ;  w )  cos 6 d0 + Fo(o). s,"" 
(3.4) 

Equations (3.1) to (3.3) are evidently identical, for real w ,  with equations de- 
scribing the fluid motion due to the forced periodic heaving (of constant ampli- 
tude Yo(@)) of the circular cylinder (see Ursell 1949). To define CD completely an 
additional radiation condition at  infinity is needed. If w is a complex frequency in 
the upper half plane, let it be assumed that '(x, y;  w )  defined by (2 .5 )  does not 
tend to infinity as x and y tend to infinity. (Compare the discussion following 
equation (2.6) above.) It can then be shown that at  large distances the potential 
is the sum of progressive outward-travelling waves 
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according as w 0. (The same condition can be obtained by use of the Rayleigh 
friction; cf. Lamb 1932,s 242). For positive w this radiation condition is also the 
same as for the forced periodic heaving of the cylinder, and we conclude that 
@(x, y; w )  is proportional to the potential obtained by Ursell (1949) for positive 
w ,  and to its complex conjugate for negative w. Clearly the constant of propor- 
tionality contains &(o) as a factor. If the function @(x, y; w )  is now regarded 
as known, though not explicitly in closed form, the equation 

@(a sin 8, a cos 8; w )  cos 8 d8 = ~niaoY,(w) R,(o, a,  g)  (3.6) 

defines a non-dimensional function A,(@, a, g) which is in fact a function of the 
single variable w(a/g)&, 

(3.7) 

as is obvious from dimensional reasoning. The function is in principle a known 
function which can be deduced from published computations on periodic heaving 
(Ursell 1957). The real part of A(w(u/g)*) is the virtual mass coefficient, the 
imaginary part is simply related to the wave-making coefficient. In  fact, if 
A ( @ )  is the wave amplitude at infinity, then the imaginary part of A(w(a/g)*) is 
5 2g2n-1u-2w-4(A(~)/Yo(w))2 according as w 5 0. (It is shown in the appendix 
below that A has a logarithmic branch point at  w = 0.) It now follows from 
(3.4), (3.6) and (3.7) that 

A,(@, a, 9 )  = W J ( a / 9 ) 9 ,  

(3.8) 
1 FO(0) Yo(@) = __ 

2PYa 1 - (naw2/4g) (1 +R(w(a/g)q)  ’ 
whence, from (2.8), 

(3.9) 

(3.10) 

by the convolution theorem (Titchmarsh 1948, p. 59). The functionf,(t) is the 
applied vertical force, the function h, is defined by the equation 

e-iur du 
h1(7) = - 

1-&u2(1+R(u))’ 
(3.11) 

and vanishes for 7 < 0. In  (3.11) the function A(u) is the complex-valued force co- 
efficient described above. The expression (3.10) shows that the displacement yo(t) 
is a linear convolution transform of the forcef,(t), as might have been expected. 
We have assumed that the real and imaginary parts of the denominator do not 
both vanish at the same point on the real w-axis; if they did so, then the cylinder 
could oscillate freely at  that frequency without damping. Published computa- 
tions (Ursell 1957) show that for the heaving circular cylinder there is in fact 
damping at  all frequencies. (The energy considerations of 2 showed, moreover, 
that for motions of finite energy the function Yo(@) is regular in the upper half 
w -plane. ) 

Equations (3.9) and (3.10) solve our problem in a form involving convergent 
integrals. For any givenfo(t) they can be computed, but direct quadrature is not 
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convenient for large values oft when the integrand oscillates rapidly. Numerical 
results are not yet available but it is remarkable that the dominant asymptotic 
behaviour for large t can be found analytically, although A(u) is not known in 
closed form. The behaviour of Fourier integrals like (3.9) and (3.11) for large t 
is found as follows: let the variable w (or u = w(a /g ) i )  be regarded as a complex 
variable, and the integral as a contour integral. In general, the integrand has 
singularities in the lower half u-plane. It is then known (see e.g. Carslaw & 
Jaeger 1947, p. 279) that the asymptotic behaviour is dominated by the behaviour 
of the integrand at  those singular points which lie on or nearest to the real w-axis. 
In  our problem these are (i) the logarithmic branch point at w = 0 due to the 
logarithmic branch point of the function A; (ii) possibly the points w = co on 
the real w-axis if A is sufficiently singular there. 

FIGURE 1. Thc path of integration in the u-plane. 

The contour of integration AOB of (3.11) along the real w-axis is therefore 
deformed into the contour AC- OC, B where AC- and C ,  B coincide with the real 
axis except near w = 0. The points C-, C ,  lie on opposite sides of the negative 
imaginary w-axis which is a branch cut. The contour is chosen so that there are 
no singularities above it (see figure 1). The value of the integral is clearly un- 
changed by the deformation of the contour. The following argument is given for 
the function h1(7) defined by (3.11) but applies with little change to (3.9). 

The contribution from C- OC, is found from Watson's lemma (Erdklyi 1956, 
p. 31), for which the leading terms in the expansion of the integrand near u = 0 
are needed. It is clear that single-valued terms make no contribution. From 
(A 1.18) in the appendix we see that, along OC, and OC-, 

[ 1 - $nu2( 1 + R(u))]-' 

= 1 - inlu12 - *nlu12 {% - 2 In 2 - y - 2 ( h  1u.l T in)} + smaller terms, (3.12) 

whence 

(3.13) 
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The contributions to h1(7) from AC- and from C, B are more difficult to estimate; 
the method of repeated integration by parts (ErdBlyi 1956, p. 47) succeeds only 
if the first few derivatives of A(u) do not oscillate rapidly a t  infinity. If  they do 
oscillate, then h1(7) may oscillate rapidly for large 7. There are, however, reasons 
for believing that the contributions from AC- and C ,  B are negligible, see $ 5  
below. We conclude from (3.13) that 

(3.14) 

If the applied force acts for only a finite time, then clearly from (3.10) 

(3.15) 

where in fact the integration extends only over a finite range. It is seen that 
yo($) is ultimately non-oscillatory. Presumably the mean level of the fluid near 
the body is also given by (3.15). It is remarkable that a downward force causes a 
rise in mean level which decays only slowly. 

4. Cylinder slightly displaced from equilibrium 
This is the problem described in $ 1 above. There is no applied force, the initial 

displacement yo(0) is prescribed, and the cylinder is released at time t = 0 with 
zero velocity. The initial velocity of the fluid is assumed to vanish. The procedure 
is similar to that of $3, except that some of the initial-value terms in (2.9) and 
(2.10) must now be included. 

The transformed equations are 

(g+&) @(x,y; w )  = 0 when r > a, y > 0; 

(w2+g&) @(x,y; w )  = 0 when y = 0, 1x1 > a;  

Join 

(4.2) 

- = ( - ~ w Y ~ ( w ) - ~ ~ ( O ) ) C O S ~  when r = a, 0 < 8 < Qn; (4.3) 
a@ 
ar 

&npa2{ - W 2 Y 0 ( W )  + iwy,(O)} 

= - 2pgaYo(w) - 2paiw @(a sin 8,  a. cos 8; w )  cos 8 d8; (4.4) 

together with the radiation condition (3.5). Equations (4.1) to (4.3) are identical 
with equations (3.1) to (3.31, except for the coefficient in (4.3), and it is thus 
obvious that 

@(asinO,acosO; w)cos8d8  = ~7ra(iwYo(w)+y,(0))A(w(a/g)*) ,  (4.5) Jo*n 
where A is the function defined by (3.6) and (3.7). On substituting (4.5) in (4.4) 
it  is seen that 

2pgaYo(~)  (1 - (TCLOJ~/~~)  (1  +A)} = - t n p 2 y o ( 0 )  (iw + iwA), (4.6) 
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whence l a  
yo(t)  = 27T y 0 ( w )  e-iwtdw 

(4.7) 
U w{l +A(w(u/g):)} e-iwtdw 

= - t i qyo (O) /  -a I - ( n ~ w ~ / 4 g ) { l + A }  

a u( 1 + A(u)) eciuTdu 

-a 1 - i n ~ ~ (  1 + A(u)) 
where r = t(g/a)*. Thus 

where by definition 
YoV) = Y d O )  hz(t (s l44)  

a u( 1 +A)  eciUTdu 

(4.8) 

(4.9) 

(4.10) 

We note that this is related to the function hl(r) defined by (3.11), since, when 
7 > 0. 

e-iur 1 
h I ( 7 )  + hL(7) = Sw -a 1 - &nu2( 1 + A )  ( ~ - i u ~ ( l + A ) )  du 

(4.11) 

Also, from (4.9), h2(r) + 1 as r -+ 0 through positive values. The asymptotic 
behaviour of h2(7) for large r can be found by the method of 9 3; alternatively, it  
may be inferred from (4.11). For 

h2(r) = ITa hl(r') dr' 

N ITw ( -h3) dr' from (3.14) 

4 
nr2 * 

- - -- 

It follows from (4.9) that 

(4.12) 

(4.13) 

(4.14) 

The remarks at the end of Q 3 apply equally to the present problem, in which 
however the monotonic decay is even slower than before. 

5. Discussion 
In  $3 3 and 4 we have solved two initial-value problems by means of Fourier 

integrals. An explicit asymptotic treatment for large t was analytically possible 
because the origin o = 0 in the frequency plane is a logarithmic branch point, 
and gave the following results: a body initially depressed and then released from 
rest ultimately approaches its equilibrium position from above, the distance 
decaying like t-2 (see (4.14)). For a body set in motion by an applied force the 
results are similar, except that the decay varies like tc3 (see (3.15)). In  this final 
stage any damped harmonic terms arising from complex zeros of the denominator 
of (4.8) are insignificant; this was not expected. I have not yet succeeded in 
finding a physical interpretation for the many-valued behaviour of the force- 
coefficient A(u) = A(w(u/g)*) near w = 0 in the complex frequency plane. 
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In  obtaining these results it was necessary to assume that the force coefficient 
A(u) and its first few derivatives do not oscillate rapidly for large real values of 
u; otherwise rapidly oscillating terms like cos (gt2/4a) might also appear in the 
asymptotic expressions. (For comparison, if a water surface is given a slight 
initial parabolic deformation in the range -a  < x < a, then the surface velocity 
at x = 0 does contain such terms.) There remains the problem, not yet com- 
pletely solved, of finding out whether our assumption is correct. 

This can be expressed more precisely. We already know that, for real u, 
4 

A(u) N I - = +  ..., 

as was shown in an earlier paper (Ursell 1953, equation (5.1)), but now we need 
the behaviour in more detail. It is sufficient to show that (5.1) holds uniformly in a 
finite sector - E  < argu < 0 of the complex u-plane, because then the curves 
AC- and C, B may be deformed into the lower half plane so as to make an angle 
with the real u-axis, and the contributions from large u are then evidently 
exponentially small. On re-examining the integral equations in earlier papers 
(particularly in Ursell 1961) it  is found that in fact only a few changes are needed 
to extend (5.1) from the real axis into an angle 0 < argu < E but not into an 
angle - E  < argu < 0. It is, nevertheless, believed that the result (5.1) is valid 
there also; arguments are given in the appendix below. It follows (cf. ErdBlyi 
1956, p. 21) that (5.1) may be differentiated any number of times, so that the 
derivatives of A(u) do not oscillate rapidly for large u. 

The analysis given in $3 3 and 4 above is equally applicable to finite depth, if 
R(u) is now interpreted as the force coefficient for finite depth. But the conclu- 
sions are different, for it appears that A(u) is now single-valued near u = 0, 
and it becomes more difficult to locate the singularities nearest to the real 
u-axis. It seems likely that the motion is ultimately a damped harmonic oscilla- 
tion, with a period depending on the depth rather than on the radius. 

Appendix. The force coefficient R(u) near u = 0 and u = co 
The potential @(x, y; w )  describes the forced heaving of a circular cylinder and 

was calculated in earlier papers (Ursell 1949, 1953, 1957). Here we are concerned 
with the derived quantity A(u) = A(w(a/g)$)  defined by (3.6) and (3.7). 

(1) The analytic form of A for swinll u. This is needed in (3.12) above. The in- 
finite processes used here can be rigorously justified, e.g. by the theory of infinite 
determinants. 

The potential @(x, y; w )  is expanded in the form (cf. Ursell 1949) 

(A 1.1)  

The where K = w2/g,  and where it is first supposed (to fix ideas) that w > 0. 
function CDO is the source potential 

cos (kr sin 0) 
= j OD e-kr cos e k-K-dk ,  (A1.2) 

0 
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where the path of integration passes below the point k = K on the real axis, 
so as to make Q0 satisfy the radiation condition (3.5). All the terms on the right- 
hand side of (A 1.1) are harmonic and satisfy the free-surface condition (3.2). 
The normal-velocity condition? (3.3) 

($ <D(Kr, 8))  = - i w ~ , ( w )  cos 8 (A 1.3) 

is also satisfied if the equation 

D(Ka) a- a0(Kr,  8 )  - 3 a,(Ka) cos 2nO + - cos (2n - 1) 8 1 Ka 
2n 

- - -io~a-~Y,(w) cos8 (A 1.4) 
( i r  ) :  ( 

holds in the range 0 < 8 < &-. This condition determines the coefficients 

It is convenient to begin by eliminating Yo(w). Integration of (A1.4) over 
D W ) ,  a,(Ku). 

0 < 0 < ingives 

- 
( - 1)n-l Ka W 

~- - -iwa-lYo(w). (A 1.5) 
D(Ka)s 'n(ag 0 Qo(Kr,8') 2n(2n- 1) 
(A 1.4) and (A 1.5) together give 

D(Ka) [ ( a ~ Q o ( l i , , 8 ) ) - c o s 8 ~ ~ n ( a ~ ~ o ( ~ r , 8 ' ) ) d D ' ]  0 

( -  1p-1 case)]. (A 1.6) 2n- 1 
m 

1 
cos(2n-l)8-- 

The functions in brackets on the right-hand side involve Ka as a linear factor 
only. The function on the left-hand side involves terms like (Ka)m and 

(Ka)" (In Ka - in), 

as is readily seen from the expansion for a0 
(Kr)" cos m8 00 

(Do(Kr,8) = - ( -  l)m (1nKr -in) -- 
0 r ( m +  1) 

where I&) = dln F(z ) /dz  (ErdBlyi 1953, vol. 1, p. 15). This can be obtained by 
considering that the right-hand side of (A 1.7) is a harmonic function which is 
an even function of 8, and which for 8 = 0 coincides with the expansion for 

here El is an exponential integral, (ErdBlyi 1953, vol. 3, p. 143). It follows from 
(A 1.7) that 

. (A1.8) 
W (Ka)m 8 sin m8 

(m) 
+ 2 ( -  1 ) m m  (Ka)mcosmO+ C ( -  1)" 

1 r(m) 1 

t Angular brackets ( ) are used to indicate that r is to be put equal to a. 
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Now for small values of Ka the series on the right-hand side of (A 1.6) resembles 
a Fourier cosine series. Let therefore the integral operators 

cos 2n6.. .d6 (n = 0,1 ,2 ,  . . .) J”” 
be applied to (A 1.6). An infinite system of equations is thus obtained for the 
infinite number of unknowns a,(Ka). This may be solved by iteration (Ursell 
1949, p. 226), or by the theory of infinite determinants. From the analytic 
form of the various terms in (A 1.6) it  then follows that 

(A 1.9) 

where a,*, a,** are power series in Ka with real coefficients, convergent for small 
Ka. Substitution in (A 1.5) gives 

iwa-l%(w) = D(Ka){(lnKa-in) Yi(Ka)+ Yg*(Ka)), (A 1.10) 

and substitution in (A 1.1) gives 

$ loin (@) cos B d6 = D(Ka) ((In Ka - in) Z$ (Ka) + Z$*( Ka)), (A 1.1 1) 

where Y i ,  Y;*, Z;, Zg* are real power series convergent for small Ka. Thus, with 
a change of notation, we see from (A 1.10) and (A 1.11) that the force coefficient 
is given by 

(In Ka-in)AT(Ka) +AT*(Ka) 
(1nKa - in)Ag(Ka) + Az”(Ka) ’ 

41in  (@)cos6dB 

niawY,(w) A -0- - - ~- (A1.12) 

where the A’s are real power series, convergent for small Ka. We have so far 
assumed that w > 0. When w < 0, then In Ka - in must be replaced by In Ka + in. 
It follows from this statement, since Ka = u2 = w2ag-l, that near u = 0 the 
function A is single-valued in the u-plane cut along the negative imaginary 
u-axis. 

For our purpose we need the leading terms in the A’s. If we wish to retain 
only the leading terms on the left-hand side of (A 1.6), we have from (A 1.8) 

(a: @,) = - 1 + (1nKa-in- $( 1))  KacosB - KaB sin6 

+O((ln Ka-in) (Ka)2), (A 1.13) 
whence 

(a: (Do) - cos O / : n  (a: @,) do’ = - 1 +in cosO + O(Ka). (A 1.14) 

On following the Fourier procedure described above, we see that 

a,(Ka) D ( K ~ )  = :Io*= ( - 1 + Qn cos 6 )  cos 2n6d6 + O(Ka) 

= ( -  (A 1.15) 
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whence, from (A 1.5), 

- i w a - 1 0  ( w )  = - in + (In Ka - in) + O(Ka). 
D(Ka) 

From (A 1.15) and (A 1.1) we find that 
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= - (1nKa-in) -7 + 3- 21n 2 + O(Ka), 

on summing the series. Hence, when w > 0, 

- - 

i.e. since Ka = u2, 

- 

niawY,(w) 

(A 1.16) 
8 - (In Ka - in) - y + 3 - 2 In 2 + . . . . - 
n2 l - (Z/n)Ka(lnKa-in)+ ... ' 

8 - 2(ln u- lin) + 3 - 2 In 2 - y + . . . 
n2 

A(u) = - 
1 - (4/n)  u2 (lnu - &in) + . . . 

It follows that along OC, (argu = - in )  and OC- (argu = #n) we have 

8 - 2(ln lul T in) +$ - 21n 2 - 7  + ... 
n2 1+(4/n)  ~ u ~ 2 ( h ~ u ~ T i n ) + . . .  ' 

A(u) = - -- 

(A 1.17) 

(A 1.18) 

respectively. The approximations (A 1.18) are sufficient for our needs. 
By a refinement of the preceding argument, analogous to Fredholm's theory 

of integral equations, it can be shown that A(u) is an analytic function of u in the 
entire complex plane cut along the negative imaginary axis, and that it can be 
represented by,an expression of the form (A 1.12), where the A's are now series 
with real coefficients convergent for all Ka. 

( 2 )  Asymptotic behaviour for large complex u. (See the discussion following 
equation (5.1) above.) The behaviour for large real u was considered in an earlier 
paper (Ursell 1953); equations quoted from that paper are distinguished by the 
letter 0. We examine here how the methods of that paper can be adapted when 
- e  < argu < E .  

The variable N = u2 was used in the earlier paper. An integral equation 
(0 3.15) of the form 

$(a; N )  +I"* $ ( O ;  N )  9(0, a; N )  d8 = known function of a and N 

was chosen for the values $(8; N )  of the potential on the circle, in such a way that 
the kernel 8(0, a; N )  tends to zero as N tends to infinity; there are infinitely 
many such small kernels 9. The equation was then solved by iteration, and the 
asymptotic form of the force coefficient for real N was obtained (0 5 . 1 , 0  5.7) 

0 

4 A(u) N 1 -K2+.... (A 2.1) 
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The procedure for constructing the small kernel 9 was as follows. The kernel 
derived from a simple wave source (see 0 3.3) contains large wave terms which 
were almost entirely removed by placing a wave source of suitable strength 
(depending on a) at the centre of the circle. The wave terms can in fact be can- 
celled exactly (cf. Ursell 1961, p. 644) and we shall now suppose this done. The 
kernel of the resulting equation (cf. 0 3.7, 0 3.14) is then of the form 

9 ( d ,  a; N )  = 9(l)(O,  a; N )  + eiN9(2)(B, a; N ) ,  (A 2.2)  

where 9(l) and 9'2) are both small and do not contain oscillatory terms. It is the 
factor eiN which might give rise to rapid oscillations in the derivatives of #(O; N )  
and R(u). The same procedure works for large N in an angle 

0 < arg N < 2e (i.e. 0 < argu < B ) ,  

where eiN remains bounded, provided that the kernels fP and 9(2)  remain smalI 
in this angle. This seems reasonable but needs detailed verification. 

It is the angle - 2.5 < arg N < 0, however, in which we are really interested. 
Here the factor e*N becomes exponentially large, and the method of iteration fails 
with the kernel (A2.2). But we note that the term eiN5V2) may be modified by 
subtracting a finite number m of wavefree potentials (Urselll953, p. 96, footnote). 
The resulting term is roughly of the form (2m)!N-2meiN9&2(8,a; N )  where 
a&$ is expected to be uniformly small. If now we take for m an integer near 
then Stirling's formula shows that this part of the kernel is exponentially small, 
and an iterative solution can proceed very nearly as before. The kernels 2(l) 
and 9 ( 2 )  must still be studied in detail, but it is not expected that this will present 
any great difficulty. 

When $(O; N )  has been shown in this way to be non-oscillatory, it  will then 
follow from the definition (see (3.6) above) that the behaviour of the force 
coefficient A(u) is given by (A2.1) in some positive angle - B  < argu < E and 
hence also that A(u) and all its derivatives are non-oscillatory for large real u. 

The work described in this paper was supported by the United States Office 
of Naval Research under Contract N 62558-3556(NR 062-304). 
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